Anatomy of an AI’s algorithm

Anatomy of an AI’s algorithm

Translation coming soon. In this entry, we shall explore, at different levels of difficulty, how ML algorithms adjust their parameters to solve problems. We shall see that, at its core, it all comes down to an error minimisation problem.

Translation comming soon, for original text in spanish please check: Anatomía de un algoritmo de IA

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum

HERRAMIENTA

DeepSeek R1

PROMPTS

- Generate Python code to adjust the parameters of a logistic regression–based classifier created to solve a classification problem of oranges and tangerines. We will use weight and diameter as features. The data must present a 7% overlap between the classes. Include a confusion matrix to evaluate the model.